Chapter 13 Patterns

13.1 Both composers and solvers have always enjoyed moves which trace out a pattern on the chessboard. Such patterns are generally more suited to longer problems, as we shall see in Chapter 19. One of the simplest is the switchback, demonstrated in the two-mover when the key-piece or try-piece returns to its original square to mate. 693 shows the records of 8 switchbacks by 7 different White pieces after seven tries and key, and 694* shows 4 switchbacks to and from the same square (f5) after flight-giving tries and key. 695* includes a switchback, but here the striking pattern is the initial position, whose symmetry is disturbed alike by the try 1.Qh1? and by the key. To illustrate how far the ingenuity of composers can go in making patterns out of positions, 696 is a passable two-mover in which the pieces form the shape of no less than 5 different capital letters (three of them with punctuation) in the course of the solution, starting with K and following with R, P., F. and D: A. J. Taffs added a good variation by substituting the BB on a 7 for a BP .

693) G. Doukhan

1st Hon. Ment., diagrammes, 1979

694*) A. Chéron (after C. Mansfield) Journal de Genève, 1974

695*) B. Giöbel

Svenska Dagbladet, 1923

696) G. Hume (after J. Bunting)

Western Morning News and Mercury, 1924 (version by A. J. Taffs)

13.2 Modern two-move composers have become increasingly interested in using the power of the pieces and strategic themes
to achieve patterned relations among different lines of play. The patterns are mainly reciprocal ($\mathrm{AB} / \mathrm{BA}$) or cyclic (e.g. with three elements $\mathrm{ABC} / \mathrm{BCA} / \mathrm{CAB}$ or reduced to $\mathrm{AB} / \mathrm{BC} / \mathrm{CA}$). There are also cyclic shifts (e.g. $\mathrm{ABC} \rightarrow \mathrm{BCA}$) which represent only one step round the cycle. Some patterns arise naturally from the position, and these are less interesting; the more surprising or even paradoxical they are, the higher they are rated. Also, like tries, patterns should ideally be fairly obvious to solvers, but this consideration is ignored for the purpose of records. Some of the problems in this chapter require considerable mental effort to appreciate.

WITHIN A SINGLE PHASE

Simple Black Patterns

13.3 We start with patterns confined to Black's move in actual play. An early 4 -fold Black interference cycle is shown without duals in 697*, with $\mathrm{eR}, \mathrm{dB}, \mathrm{dR}$ and cB successively interfering with one another on different squares. A 4-fold cycle of interferences on one square requires a checking key, as is elegantly shown without pawns in 698; a 3-fold cycle with a quiet key can be done with a pinned BQ, as in 699* which has a fourth BS interference thrown in. The wider definition of Black obstruction, which combines interference and square-blocking, produces a 5 -fold cycle in 700*, with K, cR, B, eR and Q successively obstructing one another on d4: the purpose of the WB on g 1 is to prevent Bd4 from obstructing the BK as well as the eBR and so blurring the cycle. The inverse of obstruction, Black clearance, produces a 5 -fold cycle in $\mathbf{7 0 1}$, with fP, B, eR, K and dP successively clearing for one another, but with the same mate at the beginning and end of the cycle.

697*) G. F. H. Packer

2nd Hon. Ment., British Chess Magazine, 1944

$1 . \mathrm{Sg} 8$	$(>2 . \mathrm{Pg} 6)$
$1 \ldots \mathrm{Re} 5$	$2 . \mathrm{Sf6}$
$1 \ldots \mathrm{Be} 3, \mathrm{Sf} 3$	$2 . \mathrm{Pg} 4$
$1 \ldots \mathrm{Rf} 3, \mathrm{Bxd} 7, \mathrm{Bg} 2+, \mathrm{Se} 4$	$2 . \mathrm{K}(\mathrm{x}) \mathrm{g} 2$
$1 \ldots \mathrm{Be} 4$	$2 . \mathrm{Be} 8$
$1 \ldots \mathrm{Rxg} 3+$	$2 . \mathrm{Kxg} 3$
$1 \ldots \mathrm{Bf} 6$	$2 . \mathrm{Pxf6} 6$

698) J. M. Rice

5th Comm., British Chess Magazine, 1968

\#2
1.Rd2+

$1 . . . \mathrm{Qd} 4$	$2 . \mathrm{Sc} 3$
$1 \ldots \mathrm{Bd} 4$	$2 . \mathrm{Bxe} 4$
$1 \ldots \mathrm{aRd} 4$	$2 . \mathrm{Bb} 3$
$1 \ldots$..Rd4	2.Rxe5

699*) H. G. M. Weenink
Good Companions, 1924

700*) K. H. Hannemann
1st Prize, Skakbladet, 1950

701) C. J. Morse

4th Hon. Ment., BCPS, 2012

\#2
Patterns across Different Moves
13.4 Patterns can also be spread across different moves. We have already seen a traditional example of universal appeal in 205*. 702 shows a more modern idea, a 5 -fold cycle of White threats and mates in reply to a (varying) Black defence after four tries and key, the pattern being $\mathrm{AB} / \mathrm{BC} / \mathrm{CD} / \mathrm{DE} / \mathrm{EA} .703$ shows a 5 -fold square occupation cycle, with Black and White successively occupying c8, d6, e6, c5, and e8. Following a flightgiving key, the variations of 704* show a 6-fold cycle of Black defending piece and White mating piece. Our longest cycle is an 8 -fold capture cycle in 705, in which Black's capture of each of $\mathrm{dR}, \mathrm{cP}, \mathrm{dS}, \mathrm{eP}, \mathrm{gR}, \mathrm{Q}, \mathrm{fS}$ and eB leads to White's recapture by the next: if the five other variations are included, White mates from as many as 12 directions.
702) F. Salazar

5th Comm., The Problemist, 1970

\#2

1.Bd7?	($>2 . \mathrm{Sg} 4$)	1.hSg2?	($>2 . \mathrm{Rd} 5$)
1...Ph5	2.Qxg5	1...Rd6	2.Re4
$1 . . . \mathrm{Pd} 1=\mathrm{Q}$!		$1 . . . \mathrm{Rd} 8$!	
1.Qxh6?	(>2. Qxg5)	1.hSf5?	(>2.Re4)
1...Bf4	2.Rd5	1...Ke6	2.Qxf6
1...Sf3,Sh3	2.S(x)f3	1...Ra4!	
		1.Be6	($>2 . \mathrm{Qxf6}$)
		1...Rxe6	2.Sg4

703) M. Stošić

1st Hon. Ment., The Problemist, 1973

704*) R. G. O Aliovsadzade \& M. Vagidov
Shakhmaty Riga, 1977

705) L. I. Loshinsky \& A. Dombrovskis

The Problemist, 1972

Correction

13.5 Reciprocal Black correction, in which random and correction moves of two different Black men commit equivalent errors and so lead to an AB/BA pattern of mates, has been much studied. With BRs and BBs confined to particular lines, we have already seen the pattern quadrupled in 468 (see 11.16). 706* is a finely constructed example in mutate form of reciprocal correction changed from set to actual play, with good byplay including an extra change.

706*) C. G. S. Narayanan \& D. L. Brown (after V. F. Rudenko \& V. I. Chepizhny)
British Chess Magazine, 1977

$1 . . \mathrm{R} \sim$	2.Sf7	$1 . Q c 7$	block
1...Rxd6	2.Qf6		
1...S~	2.Qf6	1...R~	2.dSc4
1...Se4	2.Sf7	1...Rxd6	2.Qg7
1...Rxc3+	2.Bxc3	1...S	2.Qg7
$1 . . . \mathrm{Sd} 7$	2.Pxd7	1...Se4	2.dSc4
1...Pf4	2.Pxf4	1...Rxc3+	2.Bxc3
1...Pg5	2.Rxf5	$1 . . . \mathrm{Sd} 7$	2.Pxd7
		1...Pf4	2.Pxf4
		1...Pg5	2.Rxf5
		1...Rxe3	2.Qxc5

\#2
13.6 The pattern can be fruitfully extended to cyclic correction. The records are a 4 -fold cycle without lineconfinement in 707* and a 5-fold cycle with line-confinement in the remarkable 708*, which (with only a few minor duals) links random and correction moves of Q on rank, Q on file, S, B on short diagonal and B on long diagonal, and adds two other corrections by the BS.

707*) Y. Retter
1st Prize, Banská Bystrica (BABY) Theme Tourney, 1962

1.Re5

1...B~	2.Re4
1...Bxe5	2.Sf5
1...Pf3	2.Sf5
1...Pxe3	2.Rd5
1...dR~	2.Rd5
1...Rxd3	2.Sc6
1...cR~,Kxe5	2.Sc6
1...Rxc5,Pxc5	2.Re4

708*) M. Parthasarathy
1st Hon. Ment., Die Schwalbe, 1963

Cyclic Dual Avoidance

13.7 Dual avoidance can be thought of as reciprocal, but the element of cyclicity inherent in the mere selection of one mate out of three or more (as in 688*) is rather weak, and benefits from being reinforced by other cyclic elements. Thus in the 3 -fold cycle of 709 the defences by the eBS separate the three secondary threats by cyclically cutting White guards on two out of three squares in the BK's field, thus forcing White to avoid cutting his remaining guards on those squares: we shall see the inverse of this device in 715* and 716**. Even more impressively, 710* shows a 4-fold cycle of dual avoidance, each defence successively closing two black lines and correcting for one of them, to give an $A B / B C / C D / D A$ pattern: the White interference threat, multiple bivalves and four mirror mates make up a fine composition.
709) R. M. Kofman

1st Prize, '64', 1934

710*) D. A. Smedley
2nd Prize, The Problemist, 1977

Effects

13.8 It is also possible to make patterns out of the types of defence and error involved in Black moves. In 711* five of Black's replies to the threat make a 5 -fold cycle, the error in each being the inverse of the defence in the next (opening and closing a White line, self-pin and unpin, self-block and unblock, unguard and guard, closing and opening a Black line).

711*) U. Heinonen
2nd Prize, Suomen Tehtäväniekat Theme Tourney, 1974

\#2

$1 . \mathrm{Sg} 4$	$(>2 . \mathrm{Se} 3)$
$1 \ldots \mathrm{Pxb} 2$	$2 . \mathrm{Pc} 4$
$1 \ldots \mathrm{Pf} 6$	$2 . \mathrm{Rxf} 5$
$1 \ldots \mathrm{Pe} 5$	$2 . \mathrm{Sf6}$
$1 \ldots \mathrm{Pc} 4$	$2 . \mathrm{Qxd} 4$
$1 \ldots \mathrm{Sg} 2$	$2 . \mathrm{Pe} 4$
$1 \ldots \mathrm{Sxh} 5, \mathrm{Sd} 3$	$2 . \mathrm{Qxh} 1$

ACROSS MORE THAN ONE PHASE

Cyclic Refutation

13.9 So far all the patterns have been contained in one phase, usually in the actual play but in 706* also in the set play. Our first pattern spread across more than one phase is cyclic refutation. Like ordinary dual avoidance, this doubtfully deserves its claim to cyclicity, since it simply involves the refutation of
tries by each in turn of an identifiable group of Black defences. As such, it features in most mutates and in the thematic try problems discussed in 8.9. However, the term is normally reserved for examples with changed play in all phases. The record is 3 Black defences, each refuting one of three tries with a full complement of 9 different mates across the four phases, first shown in 712* with a virtuoso display by the WQ. 333 very nearly achieves a perfect fourfold cyclic refutation, with fifteen mates different but the sixteenth unfortunately dualised, as shown in the solution.

712*) B. P. Barnes
1st Prize, Problemnoter, 1961

1.Qxf6?	(>2.Sd6)	1.Qxb6?	(>2.Sd6)
1...Qf8	2.Qxg6	1...Bc5	2.Sxc5
1...Bc5	2.Sc3	1...Sc4	2.Qb1
1...Sc4!		1...Qf8!	
1.Qa3?	(>2.Sd6)	1.Qe6	(>2.Sd6)
1...Qf8	2.Rxg4	1...Qf8	2.Qxg4
1...Sc4	2.Qd3	1...Bc5	2.Qxd5
1...Bc5!		1...Sc4	2.Rxd4

Reciprocal Change
13.10 In reciprocal change the mates after two Black moves are switched from virtual to actual play. The trick is less difficult than it sounds, and has been achieved after BK flights, unpins of White and many other types of Black defence or error. 713, with its symmetrical position and pendulum key providing for Sxe4, is a rare example of double reciprocal change from set to actual play, the pattern being ABCD \rightarrow BADC.
713) M. Lipton

3rd Hon. Ment., Probleemblad, 1957

Cyclic Change

13.11 Cyclic change has been achieved several times but never with more than 2 Black defences and 3 White mates, the latter being repeated over three phases in the pattern $A B, B C, C A$ (sometimes called a cyclic Zagoruiko). $\mathbf{7 1 4}$ is a clear-cut example. Cyclic change can be combined with cyclic refutation, as in the pioneering 715*. White's three tries cyclically cut Black guards on two out of three potential mating squares, forcing Black to avoid cutting his remaining guards on those squares, the inverse of the device in 709: the two patterns of defences and mates interweave to give $\mathrm{aAbB}, \mathrm{cBaC}, \mathrm{bCcA} .716^{* *}$ is a superb masterpiece which fills out this pattern by providing a natural scheme of new mates for the three potential refutations. The position is open; both tries and key involve the WQ in making way for a humble WP; the two refutations cut White lines of guard in a way that is not easy to spot; and there is an eighth mate after Rd4.
714) E. Y. Livshits

1st Hon. Ment., Shakhmaty v SSSR, 1962

715*) S. Ekström \& G. Andersson

1st Prize, Tidskrift för Schack, 1947

1.8f6?	(>2.Pd6,Qf5)	1.Be3?	(>2. Pd6)
1...Se3	2.Qf3	$1 . . . \mathrm{Se} 5$	2.Sxg3
1...Se5	2.Qf4	1...Sf6	2.Qf3
1...gS else,Rxf6	2.Pd6	1...Rd3	2.Pxd3
1...Rc8	2.Qf5	1...Bd6	2.Sxd6
1...Sxf6!		1...Rf5	2. Qxf 5
1.Be5?	(>2.Pd6)	1...Sxe3!	
1...Se3	2.Sxg3	1...Se5	2.Sxg3
$1 . . . \mathrm{Rd} 3$	2.Pxd3	1...Sf6	2.Qf3
1...Bd6	2.Sxd6	$1 . . . \mathrm{Se} 3$	2.Pd3
1...Sxe5!		1...Bd6	2.Sxd6
		1...Rf5	2.Qxf5

*

716**) L. I. Loshinsky \& V. I. Chepizhny
1st Prize, Olympic Tourney, 1960

Cyclic Mate Transference

$13.12 \mathbf{7 1 4}$ had two unchanged Black defences and a changing cycle of 3 White mates. Mate transference requires the inverse of this pattern. 717, with checking tries and key, shows 2 unchanged White mates transferred over three phases in reply to a changing cycle of 3 Black defences (with pattern AB,BC,CA), with a third mate transferred between two of the phases.
717) J. M. Rice

1st Special. Hon. Ment., British Chess Federation Tourney, 1967/8

\#2
Dombrouskis Theme

$1 . \mathrm{Rxd} 3+?$		$1 \ldots \mathrm{Bc} 5$	$2 . \mathrm{Qxd} 3$
		$1 \ldots \mathrm{Sc} 5!$	
$1 \ldots \mathrm{Kc} 5$	2.Qb4		
$1 \ldots \mathrm{Kc} 4$	2.Qc3	$1 . \mathrm{Be} 6+!$	
$1 \ldots \mathrm{Bd} 4!$			
		$1 \ldots \mathrm{Kd} 4$	$2 . \mathrm{Qb} 4$
$1 . \mathrm{Rxb5} 5+?$		$1 \ldots \mathrm{Kc5}$	2.Qc3
		$1 \ldots \mathrm{Ke} 4$	2.Qxd3
$1 \ldots \mathrm{Kc} 4$	2.Qb4	$1 \ldots \mathrm{Kxc} 6$	2.Rc8
$1 \ldots \mathrm{Kd} 4$	2.Qc3		

13.13 Recent years have seen a great proliferation of two-movers with pattern play across different phases. One of the most paradoxical of these patterns was first shown by the Latvian composer Alfreds Dombrovskis in 1958. His theme, whereby a Black move which refutes a White threat in try play enables the same White move to mate in actual play, is cleverly quadrupled in 718. giving $\mathrm{Aa}, \mathrm{Bb}, \mathrm{Cc}, \mathrm{Dd}, \mathrm{aAbBcCdD} .719$ goes a step further in achieving 5 Dombrovskis refutations; but after the key all of them except Pc4 become random defences, and there are only four different mates.
718) D. N. Kapralos

3rd Prize, Probleemblad Theme Tourney, 1985

719) M. Mladenović

1st Special Hon. Ment., The Problemist, 2004

Banny and Le Grand Themes
13.14 In the Banny theme at least two White tries and Black refutations reappear as actual Black defences and White mates, but without paradox. 720* is a 4 -fold example with pattern $\mathrm{Aa}, \mathrm{Bb}, \mathrm{Cc}, \mathrm{Dd}, \mathrm{bAaBdCcD} . \ln$ the Le Grand theme at least two White threats reappear as mates in other phases after a single Black defence, again without paradox. 721* shows a rare 4-fold cyclic Le Grand with pattern AB,BC,CD,DA.

720*) C. Wiedenhoff
1st Prize ex aequo, A. Feladvány, 1982

721*) E. Klemanič
4th Prize, Práca, 1991

Vladimirov Theme and Double Duels
13.15 We have seen in the Dombrovskis theme try threats reappearing as mates after refutation defences: in the Vladimirov theme it is the tries themselves that do so. But Vladimirov records are much higher, since the theme can be shown in a commonplace way by Black captures of the try-piece and White counter-captures in the actual variations. Thus $\mathbf{7 2 2}$ shows 14 such mutual captures, and with the added brutality of checking tries the record goes up to 16 in $\mathbf{7 2 3}$. Without mutual captures, the theme becomes more paradoxical, and no more than 3 Vladimirov variations have been shown, as in the technically perfect 724(N)*. Brutal Vladimirov examples often feature double duels, i.e. the same pair of White and Black pieces engage in both a try-and-refutation duel and an actual duel: $\mathbf{7 2 2}$ has two fivefold double duels and one fourfold. $\mathbf{7 2 5}$ shows a 6 -fold double duel between WQ and BQ, with checking and pinning tries and with only one capture-free variation (1...Qe4 2.Qh5). Again the record for a double duel without mutual captures is no more than 3-fold, and 726* is a beautiful non-Vladimirov example between WB and BB , using cyclical rather than retaliatory mechanisms: each try pre-empts one defence and provides for another in rotation, while in the actual play the WB repairs the damage done by each defence.
722) M. McDowell (after F. Schrüfer)

The Problemist, 1996

723) N. G. G. van Dijk

The Problemist, 1996

\#2

1. White checks?	Black captures!
$1 . \mathrm{Bh} 4$	block
$1 \ldots \mathrm{Qb} 3, \mathrm{Qe} 3+$	$2 . \mathrm{QxQ}$
$1 \ldots \mathrm{Qc} 3, \mathrm{Qd} 3$	$2 . \mathrm{RxQ}$
$1 \ldots \mathrm{Rf4}$	$2 . \mathrm{Rxf} 4$
$1 \ldots 8 \mathrm{R}$ else on file	$2 . \mathrm{QxR}$
$1 \ldots \mathrm{R}$ any	$2 . \mathrm{R}(\mathrm{x}) \mathrm{f} 2$
$1 \ldots \mathrm{Bb} 7$	$2 . \mathrm{Bxb7}$
$1 \ldots \mathrm{~B}$ else	$2 . \mathrm{QxB}$
$1 \ldots \mathrm{gS}$ any	$2 . \mathrm{QxS}$
$1 \ldots \mathrm{Sg} 4$	$2 . \mathrm{Qxg} 4$

724[N]*) D. Stojnić
Mezija, 2005

1.Sc2?	($>2 . \operatorname{Sxd} 4$)	1.Sd5?	$\begin{aligned} & \text { (>2.Qb1, } \\ & \text { Sxc7) } \end{aligned}$
1...Sxc2,Sxf3	2.Qd3	1...Pf6	2.Qb1
1...Qxf2!		$\begin{aligned} & \text { 1...Qxf2,Qxf3, } \\ & \text { Rg6,Rxh7, } \end{aligned}$	
1.Sd3?	(>2.Rc5)	Bxh7 1...Pf5!	2.Sxc7
$1 \ldots . \mathrm{Sxd} 3$	2.Qxd3		
1...Qxf3!		1.Qb1	($>2 . \mathrm{S} \sim$)
		1...Qxf2,Sc2	2.S(x)c2
		1...Qxf3	2.Sd3
		1...Pf5,Pf6	2.Sd5
		1...Pxb4	2.Qxb4

725) C. J. Morse

The Problemist, 2006

\#2

726*) D. Stojnić
2nd Prize, N. Leontyeva-75 JT, 2003-4

\#2

1. Bc 3 ?	(>2.Ra4)	1.Be1?	(>2.Ra4)
1...Bg5	2.Qxg5	1...Bxg3	2.Qxg3
1...Pxd5	2.Sxd5	1...Pxd5	2.Sxd5
1...Bxg3!		1...Bf6!	
1.Bd2?	(2.Ra4, S~)	1.Ra4	($>2 . \mathrm{B}$)
1...Bf6	2.Sc4	1...Bxg3	2.Bd2
1...Bg5!		1...Bg5	2.Be1
		1...Bf6	2.Bc3
		1...Pxd5	2.Sxd5
		1...Pxb4	2.Rxb4

Cyclic Shift
13.16 Some pattern problems do not show a complete cycle but only the first step, called a cyclic shift. Whereas cyclic change has not been shown with more than 2 Black defences and 3 mates, in 727* a cyclic shift of 4 changed mates after unchanged Black defences is ingeniously achieved from set to actual play by the composer who has given his name to this theme, the pattern being ABCD \rightarrow BCDA. 728* shows a similar 3-fold cyclic shift in mutate form, which makes the pattern more obvious to the solver. The pawnless 729* not only combines the Lacny theme with partial Fleck, but also conjures up from the same trio of mates two reciprocally changed pairs after $\mathrm{Sg} 5 / \mathrm{Re} 5$ (AC,CA) and Se5/Rg5 (CB,BC). Finally the extraordinary 730* shows a 5 -fold cyclic shift of the defensive motives of five Black defences (guard, capture of threat piece, unpin, unblock, cutting White line of
guard) as they defeat the different threats introduced by try and key.

727*) L. Lačný
2nd Prize, Magyar Sakkélet, 1955

728*) A. Pituk
1st Prize, Banská Bystrica (BABY) Theme Tourney, 1958

729*) P. Gvozdják
1st Prize, Mat-Pat 6th TT, 1994

730*) L. Lačný

1st Place, World Chess Composing Tourney, 1972-5

\#2

